Spoofing and deepfakes in biometrics and the risks of identity theft AI Tech & Policy Talks

Prof. Sébastien Marcel (www.idiap.ch/~marcel)

Idiap Research Institute

Outline

Biometrics Security and Privacy (BSP) at Idiap

Introduction to PAD

PA examples – reality

PA Instruments (PAIs)

Presentation Attack Detection (PAD)

Conclusion

Outline

Biometrics Security and Privacy (BSP) at Idiap

- Introduction to PAD
- PA examples reality
- PA Instruments (PAIs)
- Presentation Attack Detection (PAD)
- Conclusion

The BSP group at Idiap

Research themes

signal (image, audio) processing and AI (machine/deep learning) applied to BSP:

- Biometric and Attribute recognition:
 - **Face** (2D, 3D, multi-spectral, heterogeneous)
 - Speaker, Vein (finger, palm and wrist)
 - Electro-physiology (EEG/ECG)
 - Gender recognition, age and heart-beat estimation (rPPG)
- Security: Presentation Attacks (PA aka spoofing), Morphing and Deepfakes detection
- Privacy: Template Protection (irreversible and unlinkable biometrics)
- Multi-modal fusion: combining biometrics and PA detection (PAD)
- Al and responsible datasets: fairness, trojan/backdoors, ethics and synthetic datasets

Reproducible Research as a priority

Outline

Biometrics Security and Privacy (BSP) at Idiap

Introduction to PAD

PA examples - reality

PA Instruments (PAIs)

Presentation Attack Detection (PAD)

Conclusion

Biometric system vulnerabilities

A biometric system is vulnerable to many types of attacks¹

We are mostly interested in attacks on the sensor (1), referred to as Presentation Attacks

We will also consider Presentation Attack Detection

¹Ratha, N. K. et al. "Enhancing security and privacy in biometrics-based authentication systems", IBM Systems Journal, 40(3), pp. 614–634 (2001)

Definitions

Presentation Attack (PA)

- An attempt to fool the biometric recognition system by presenting fake biometric data to the sensor, e.g.,
 - A **replica** of an enrolled user's biometric features (if the goal is to **impersonate** that user), or
 - Generic biometric features (if the goal is to avoid recognition)
- PAs are also commonly called spoofing attacks, and the fake biometric data is referred to as a spoof

Presentation Attack Detection (PAD)

- The determination of a PA (i.e., "the presented biometric data is/is not a spoof")
- Also commonly referred to as anti-spoofing

Definitions

Presentation Attack Instrument (PAI)

- The biometric characteristic or object used to launch a PA
- Examples: Face mask, gummy fingerprint, dead body parts, etc.

Bona Fide Presentation

- Normal (intended) interaction of the subject with the biometric system's sensor
- Basically, anything which is not a PA

Note: See *Biometric presentation attack detection – part 1*, ISO/IEC 30107-1:2016 (2016) for formal (standardised) definitions.

Importance

- PAs pose a major threat to biometric recognition systems
- This is because the attack is external to the system (i.e., at the sensor), so the attacker does not need to have any knowledge about the internal workings of the system
- In fact, PAs can be launched by basically anyone, often using very basic tools
- Let's look at a few examples of PAs in reality (real-life attempts at using PA to either conceal or steal identities)

Outline

Biometrics Security and Privacy (BSP) at Idiap

Introduction to PAD

PA examples – reality

PA Instruments (PAIs)

Presentation Attack Detection (PAD)

Conclusion

Robbery (2010)

Conrad Zdzierak used a silicone face mask to pass himself off as a black character "SPFX The Player" during bank robberies²

² http://www.telegraph.co.uk/news/worldnews/northamerica/usa/8193185/ US-criminals-using-film-quality-masks-during-bank-robberies.html

Immigration (2011)

A young Asian man disguised himself as an old Caucasian man using a silicone face mask, boarded a plane in Hong Kong, then removed the disguise mid-flight and asked for refugee status upon arriving in Canada³

http://www.dailymail.co.uk/news/article-1326885/ Man-boards-plane-disguised-old-man-arrested-arrival-Canada.html

Smartphone unlock (2011)

- The Face Unlock feature on Galaxy Nexus, running Android 4.0, was spoofed by a face photograph⁴
- Android 4.1 added a "liveness check" (eye blink)

⁴ http://www.geek.com/android/android-face-lock-feature-spoofed-by-photograph-1440953

Smartphone unlock (2017)

iPhone X's Face ID was spoofed by a specially crafted face mask⁵, despite claims that it is robust to mask attacks

⁵https://www.youtube.com/watch?v=i4YQRLQVixM

Fingerprints

Smartphone unlock (2013)

The fingerprint unlock feature (Touch ID) of iPhone 5s was spoofed using a fake fingerprint⁶

⁶ https://www.youtube.com/watch?v=HM8b8d8kSNQ

Smartphone unlock (2017)

The iris unlock feature in Samsung Galaxy S8 was spoofed using a printed photograph of the enrolled user's iris (plus a contact lens)⁷

7 https://www.youtube.com/watch?v=gtQ4yzbsi-c

Outline

Biometrics Security and Privacy (BSP) at Idiap

Introduction to PAD

PA examples – reality

PA Instruments (PAIs)

Presentation Attack Detection (PAD)

Conclusion

- Recall that a Presentation Attack Instrument (PAI) is the biometric characteristic or object used to launch a PA
- We can thus think of a PAI as a method for executing a PA
- The previous PA examples demonstrated a few different types of PAIs (e.g., face masks, printed finger vein patterns, etc.)
- We will now consider PAIs in more detail, with a specific focus on face PAIs (since this is the main area of expertise for Idiap's Biometrics Security and Privacy group)
- Feel free to try these PAIs at home, but not for committing crimes!

Types of PAIs

In general, PAIs can be divided into 3 main categories:

- 1. Photograph or recording: The attacker acquires a photograph or recording of the target's biometric characteristic, and replays it to the biometric recognition system
- 2. Synthetic biometric characteristic: The attacker generates a synthetic model of either the target's biometric characteristic or a generic feature set, then presents it to the biometric recognition system
- 3. Self-modification: The attacker alters, physically or digitally, their own biometric characteristic(s) to either mimic the target's biometric characteristic(s) or to simply avoid being recognised as themselves
- Let's explore each of these PAI categories in turn, with a few examples for each

PAI: Photograph or recording

Printed face image

The method:

- 1. Print an image of the target's face
- 2. Present the face image to the face recognition system

 This method was demonstrated⁸ to work in launching a PA on 3 commercial face recognition systems

⁸Nguyen, D. et al. "Your Face Is NOT Your Password", Black Hat (2009)

PAI: Photograph or recording

Digital face image or video

- The method:
 - 1. Capture a digital image or record a video of the target's face (e.g., using a smartphone or tablet)
 - 2. Present the image or video to the face recognition system

 The REPLAY-MOBILE database⁹ contains face PAIs consisting of digital (as well as printed) photographs and videos acquired in various scenarios

⁹Costa-Pazo, A. et al. "The REPLAY-MOBILE Face Presentation-Attack Database", IEEE BIOSIG(2016)

Quizz time !

Which images are Bona Fide and which are PA?

Quizz time !

Which images are Bona Fide and which are PA?

All are PAs!

- Left: Printed images
- Middle: iPhone (digital) images
- Right: iPad (digital) images

PAI: Synthetic biometric characteristic ^{24/42}

Paper face mask

- The method:
 - 1. Acquire 1 frontal and 2 profile 2D images of the target's face
 - Upload the images to ThatsMyFace.com, where a 3D model of the target's face will be generated and the corresponding paper net will be mailed to you
 - 3. Craft the net to construct a 3D paper mask of the target's face

• Cheap to make (pprox 25 USD), but not very effective

PAI: Synthetic biometric characteristic ^{25/42}

Hard (resin composite) face mask

The method¹⁰

- 1. Acquire 1 frontal and 2 profile 2D images of the target's face
- Upload the images to ThatsMyFace.com, where a 3D model of the target's face will be generated and the corresponding hard face mask (made of a resin composite) will be mailed to you
- 3. Present the mask to the face recognition system

- More expensive (pprox 300 USD) than paper masks, but better
- Vivid colours, but no natural face movement

 $^{^{10}}$ Erdogmus, N. and Marcel, S. "Spoofing Face Recognition with 3D Masks", IEEE TIFS, 9(7), pp. 1084–1097 (2014)

PAI: Synthetic biometric characteristic ^{26/42}

Hard (resin composite) face mask with eye holes

Same as previous example, except this time the mask has eye holes

 Allows for eye movement, so a little more natural, but no flexibility for facial movement

PAI: Synthetic biometric characteristic ^{27/4}

Hyper-realistic face masks

Same as previous example but hyper-realistic¹¹ using HiRes pictures

• More expensive (\approx 3,000 USD) per mask

11
http://real-f.jp

PAI: Synthetic biometric characteristic ^{28/42}

Silicone face mask – generic

 A generic silicone face mask could be used to obfuscate an attacker's identity, but it does not correspond to any specific target face

Generic silicone face masks can be bought from a manufacturer such as CFX¹², for \approx 800 USD

PAI: Synthetic biometric characteristic ^{29/42}

Silicone face mask – customised

■ The method¹³

1. Acquire a 3D scan, measurements, and multiple 2D colour images of the target's face

¹³ Kotwal, K. et al. "Multispectral Deep Embeddings As a Countermeasure To Custom Silicone Mask Presentation Attacks", IEEE T-BIOM, 4(1), pp. 238-251 (2019)

PAI: Synthetic biometric characteristic ^{30/42}

Silicone face mask – customised

2. Send the information to a manufacturer (e.g., Nimba Creations¹⁴), who will generate a customised 3D silicone mask, including manual application of facial features (e.g., skin colour, eyebrows, etc.), for \approx 4,000 USD

Raw mask

Intermediate mask

Final mask

3. Present the mask to the face recognition system

14
https://www.nimbacreations.com/

PAI: Synthetic biometric characteristic ^{31/42}

Silicone face mask – customised

- The customised silicone face masks are quite life-like and they allow for some flexibility in facial movement
- Effective for launching PAs against face recognition systems¹⁵

¹⁵ Ramachandra, R. et al. "Custom silicone Face Masks: Vulnerability of Commercial Face Recognition Systems & Presentation Attack Detection", IEEE IWBF, pp. 1–6 (2019)

Face make-up

Apply make-up to the attacker's face to impersonate an enrolled user of a face recognition system:

PAs look realistic and allow for natural facial motion

Face make-up

Apply make-up to the attacker's face to avoid being recognised, e.g.:

PAs look realistic and allow for natural facial motion

Morphed face image

The method:

- 1. Digitally morph the attacker's face image by combining it with the target's face image
- 2. Enroll the morphed image into the face recognition system
- Present the attacker's or the target's face to the face recognition system – both should match the morphed image!

Attacker	MORPH	Target	TEST1	TEST2

- This method was demonstrated¹⁶ to work in launching a PA on two face recognition systems
- Potential problem for biometric passports

¹⁶ Ferrara, M. et al. "The Magic Passport", IEEE/IAPR IJCB (2014)

DeepFakes

The method:

- 1. Create a video of the attacker saying or doing something
- 2. Map the target's face onto the attacker's face

e.g., https://www.youtube.com/watch?v=3f66kBwfMto

- Usually accomplished using a type of deep-learning network called a Generative Adversarial Network (GAN)
- DeepFakes are becoming increasingly more sophisticated and have the potential to become a real problem ("fake news")

Outline

Biometrics Security and Privacy (BSP) at Idiap

Introduction to PAD

PA examples - reality

PA Instruments (PAIs)

Presentation Attack Detection (PAD)

Conclusion

Biometrics and PAD

Biometric sub-system: a binary classifier

biometric recognition just compares a probe to a reference and measures "similarity" to accept genuine users and to reject impostors.

Biometrics and PAD

PAD sub-system: a binary classifier

PAD determines if the probe is bona fide or a PA.

Biometrics and PAD

PAD methods

- software-based: biometric data from the sensor is analysed to discriminate bona fide vs PA (eg. motion, texture)
- hardware-based: an additional sensor (eg. multi-spectra) is used and its data analysed to discriminate bona fide vs PA (eg. heart beat, 3D, thermal imaging, multi-spectral e.g. NIR/SWIR)
- challenge-response: the user interacts with the system (eg. prompted text in face/speaker recognition)

Outline

Biometrics Security and Privacy (BSP) at Idiap

Introduction to PAD

PA examples – reality

PA Instruments (PAIs)

Presentation Attack Detection (PAD)

Conclusion

Conclusion

Is PAD a solved problem?

- Biometrics is more prevalent hence incentives for launching PAs are multiplying
- PAD solutions are deployed but proper certification is lacking
- Active PAD research but generalisation (to unseen attacks) is challenging – arms race
- PAD is not a completely solved, it continues to be an important field of research

Reference

 Handbook of Biometric Anti-Spoofing (Ed 2), S. Marcel and al. (2019) Thank you for your attention! Prof. Sébastien Marcel (www.idiap.ch/~marcel) Idiap Research Institute, Martigny, Switzerland

Idiap Research Institute

